

Editorial Universidad de Sevilla

SCHOOLS, SEISMICITY AND RETROFITTING

Beatriz Zapico Blanco (coord.)

Beatriz Zapico Blanco (coord.)

SCHOOLS, SEISMICITY AND RETROFITTING

PERSISTAH Project (Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva)

Antonio Morales Esteban, Emilio Romero Sánchez, Beatriz Zapico Blanco, María Victoria Requena García de la Cruz, Jaime de Miguél Rodríguez and João Estêvão

Sevilla 2021

Editorial Committee

Araceli López Serena (Editorial Universidad de Sevilla Director) Elena Leal Abad (Deputy Director)

Concepción Barrero Rodríguez Rafael Fernández Chacón María Gracia García Martín Ana Ilundáin Larrañeta María del Pópulo Pablo-Romero Gil-Delgado Manuel Padilla Cruz Marta Palenque Sánchez María Eugenia Petit-Breuilh Sepúlveda José-Leonardo Ruiz Sánchez Antonio Tejedor Cabrera

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher (Editorial Universidad de Sevilla).

This work has been developed within the framework of the PERSISTAH project, *Projetos de Escolas Resilientes aos Seismos no Território do Algarve e de Huelva* (0313_PERSISTAH_5_P), developed jointly by the universities of the Algarve and Seville and funded by the European Commission through the call EP – INTERREGVA Spain Portugal (POCTEP).

Cover design: Emilio Romero Sánchez

- © Editorial Universidad de Sevilla 2021 c/ Porvenir, 27 - 41013 Sevilla Tlf. 954 487 447; 954 487 451 - Fax 954 487 443 Correo electrónico: eus4@us.es Web: <https://editorial.us.es>
- © Beatriz Zapico Blanco (coord.) 2021
- © Antonio Morales Esteban (Universidad de Sevilla), Emilio Romero Sánchez (Universidad de Sevilla), Beatriz Zapico Blanco (Universidad de Sevilla), María Victoria Requena García de la Cruz (Universidad de Sevilla), Jaime de Miguel Rodríguez (Universidad de Sevilla) and João Estêvão (Universidade do Algarve) 2021

ISBN-e: 978-84-472-3122-5 DOI: http://dx.doi.org/10.12795/9788447231225

Layout and digital edition: Dosgraphic, S.L. (dosgraphic@dosgraphic.es)

Summary

Symbols	11
Abbreviations	13
Chapter 1. Introduction	15
1.1. Project objective and justification	17
1.2. Main outcomes of the project	18
1.3. Document structure	20
Chapter 2. Seismic hazard in the Algarve-Huelva Region	21
2.1. The Algarve-Huelva Region	21
2.2. The impact of soil type on seismic hazard	24
2.3. Seismic hazard in Spain	24
2.3.1. Chronological evolution of seismic building codes in Spain	25
2.3.2. Mandatory code in Spain	26
2.3.2.1. The Seismic Building Code (NCSE02)	26
2.3.2.2. Update of the seismic hazard maps	32
2.3.3. Recommended code: Eurocode 8	34
2.3.3.1. Determining the response spectrum	35
2.3.3.2. Spanish National Annex	37
2.4. Seismic hazard in Portugal	38
2.4.1. Historical seismic codes: Decree law no. 235/83	38
2.4.1.1. Probabilistic seismic hazard analysis	38
2.4.1.2. Determination of seismic action	39
2.4.2. Mandatory code: Eurocode 8	39
2.4.2.1. Construction of the response spectrum	40
2.4.2.2. Portuguese National Annex	40
2.5. Comparison of seismic hazard in the Algarve-Huelva region	42
Chapter 3. Characterisation of schools	47
3.1. Sources of information	47
3.1.1. Creation of the database	48
3.1.2. Creation of building specification sheets	48
3.1.3. Questionnaires sent to schools	51

3.2. School buildings characterisation process	53
3.2.1. Classification according to structural system and year	
of construction	53
3.2.2. Classification according to geometry and volumetry	54
3.2.2.1. Compact type buildings	55
3.2.2.2. Linear type buildings	58
3.2.2.3. Intersection buildings	60
3.2.2.4. Prism buildings	64
3.2.2.5. Juxtaposed buildings	64
3.2.3. Sports facilites	65
3.3. Characterisation of masonry buildings	65
3.4. Characterisation of reinforced concrete frame buildings	71
3.4.1. Date of construction and regulations	71
3.4.2. Area and height	73
3.4.3. Slabs	73
3.4.4. Column and beams	74
3.4.5. Infill walls	75
3.4.6. Irregularities	76
3.4.7. Subtypes	76
3.4.7.1. Square footprint	76
3.4.7.2. Rectangular footprint	77
3.4.7.3. Intersection	79
3.4.7.4. Irregular	80
Chapter 4. Structural safety analysis	81
4.1. Method	81
4.2. Capacity analysis	82
4.3. Performance point	84
4.3.1. N2 Method	84
4.3.1.1. Implementation in the PERSISTAH software	85
4.3.2. Capacity-demand spectrum method	91
4.3.2.1. Implementation in the PERSISTAH software	93
4.4. Structural damage analysis	93
Chapter 5. PERSISTAH Software	99
5.1. Schools module	100
5.1.1. Menu: School	100
5.1.2. Menu: School buildings	103
5.1.3. Importing capacity curves	104

5.2. Seismic action module	104
5.3. Damage module	106
5.3.1. Operation	106
5.3.2. Obtaining the School-score	108
Chapter 6. Sismic retrofitting strategies	109
6.1. International context	110
6.1.1. ATC-40	110
6.1.2. FEMA 356	113
6.1.3. EC8	115
6.1.3.1. Masonry buildings	116
6.1.3.2. Reinforced concrete buildings	119
6.1.3.3. Other buildings	120
6.2. Masonry buildings	125
6.2.1. State of the Art	126
6.2.1.1. Wire mesh	128
6.2.1.2. Steel sheet bands	129
6.2.1.3. Injections	131
6.2.1.4. Reinforced concrete elements	132
6.2.1.5. Carbon fibre reinforced polymers (CFRP)	133
6.2.1.6. Rebaring	134
6.2.2. Retrofitting schemes considered	136
6.3. Reinforced concrete buildings	138
6.3.1. State of the art	139
6.3.1.1. Bracings	139
6.3.1.2. Energy dissipation systems	140
6.3.1.3. Shear walls	140
6.3.1.4. Confinement jackets	142
6.3.2. Retrofitting schemes considered	143
6.4. Seismic Reinforcement Index	145
Chapter 7. Example of seismic retrofitting	147
References	153
List of tables	159
List of figures	161

Symbols

- A Thermal expansion Coefficient
- A_I Architectural impact
- a_b Base ground acceleration
- a_{gR} Reference peak acceleration
- ag Ground acceleration for a type A soil
- a_r Reference PGA ($T_R = 475$).
- C Soil factor
- C_I Cost index
- d MDOF system equivalent displacement
- d* | SDOF system equivalent displacement
- $d_{\mbox{\scriptsize Di}}$ $\,$ Average displacement associated to a damage limit state
- d_{et}* SDOF elastic displacement
- d_m^* Displacement at plastic hinge formation
- d_t MDOF target inelastic displacement
- d_t* SDOF target inelastic displacement
- $d_{t,D}^*$ Displacement associated to a damage limit state
- d_u* SDOF ultimate deformation
- d_v^* SDOF deformation at yield point
- E Modulus of elasticity (Young's modulus)
- E_b Brick modulus of elasticity
- E_m* Plastic hinge formation energy
- E_I Efficiency index
- F* SDOF system equivalent force
- f_b Brick Compressive strength
- f'_c Concrete characteristic compressive strength
- Fi Set of MDOF applied forces
- f_k Masonry characteristic compressive strength
- f_m Mortar strength
- F_y Yield strength
- F_u Ultimate strength
- F_y* SDOFYield strength

 α_1 ,

G	Shear modulus
K	Contribution factor
K_{f}	Constant depending on the brick and mortar combination (EC-6)
k"*	Bilinear curve stiffness factor
κ _ε	Damping modification factor
m*	SDOF equivalent mass
mi	MDOF standardised masses of each floor
$M_{\rm w}$	Seismic moment magnitude
Ν	MDOF node of freedom
q	Behaviour factor, considering structural system and ductility
q_c	Point resistance of the static penetrometer
$q_{\rm u}$	Unconfined compressive strength
R_{I}	Reinforcement index
S	Soil amplification factor
$S_e(T)$	Elastic response spectrum
Т	Vibration period of a linear SDOF system
Т*	SDOF equivalent system period
T_A, T_B	Characteristic parameters of the response spectrum (NCSE02)
T_{B}	Lower limit of the period of the constant spectral acceleration branch (EC8-1)
T _c	Upper limit of the period of the constant spectral acceleration branch (EC8-1)
T _D	Value defining the beginning of the constant displacement response range of the
т	spectrum (EC8-1)
1 r	Return period
	Shear resistance
V	MDOE system base sheer
v	Transverse elastic waves or shear waves propagation speed
v _s Vı	Longitudinal elastic waves propagation speed
W	Density
$a_2 \vee a_3$	Reinforcement index importance factors.;
a(T)	Value of the normalised elastic response spectrum
(-) β.	Standard deviation of the displacement logarithm d _{Di}
Г	MDOF-SDOF transformation factor
n	Damping correction factor with reference value
اب ر	MDOF Lateral load parameter
	Ductility coefficient
م ج	Equivalent damping
Si.	Dimensionless risk factor
μ Φ	Cumulative distribution function for the normal distribution
Ψ 4	MDOF Displacement at each floor
ψ _i 0/ ς	Spectral acceleration percentage
/03e	opeena acceleration percentage

Abbreviations

CFRP	Carbon fibre reinforced polymer
DL	Damage limitation damage state
EC8	Eurocode 8
EC6	Eurocode 6
EC8-1	Eurocode 8, part 1
EC8-3	Éurocode 8, part 3
EMS	European Macroseismic Scale
ERSTA	Algarve Seismic Risk and Tsunami Study Estudio do Risco Sísmico e de Tsunamis
	do Algarve
FRP	Fibre reinforced polymers
IGN	Spanish National Geographic Institute
IGM	Geological and Mining Institute of Spain
LNEG	Portugal's National Laboratory of Energy and Geology
MDOF	Multi-degree of freedom system
NC	Near collapse damage state
NCSE02	Normativa de Construcción Sismorresistente Española de 2002
OP	Operacional damage limit state
PERSISTAH	Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva
PNRRC	Plataformas Nacionales para la Reducción de Riesgo de Catástrofes
PGA	Peak ground acceleration
PSHA	Probabilistic seismic hazard analysis
RC	Reinforced concrete
RSAEEP	Reglamento de Segurança e Acçoes para Estructuras de Edifícios e Pontes
SD	Significant damage limit state
SIRCO	Seismic Risk Simulator Simulador de Risco sísmiCO
SDOF	Single-degree of freedom system

Chapter 1. Introduction

This document presents the work carried out within the European research project PERSISTAH (*Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva*, in Portuguese), which has been developed jointly by the University of Seville (Spain) and the University of Algarve (Portugal). This research project focuses on the study and assessment of the seismic risk of primary school buildings in the Algarve (Portugal) and Huelva (Spain) regions. To this end, the objectives established by the National Platforms for Disaster Risk Reduction (PNRRC) of the National Civil Protection Commissions of Portugal and Spain have been considered.

Earthquakes are among the natural disasters that cause the greatest number of casualties and economic losses worldwide. Numerous studies establish the importance of studying the seismic risk of buildings in order to estimate and evaluate the possible damage that can be caused by a seismic action, with the aim of minimising human losses and impacts on material and economic assets. The destructive potential of an earthquake depends on its magnitude, but also on the seismic resilience of the affected area.

In Europe, Earthquakes have historically caused significant damage and loss of life. The earthquakes that occurred in this continent at the beginning of the 20th century cost around 29 billion euros and caused 19 000 casualties (Battarra *et al.*, 2018).

The Iberian Peninsula has moderate seismic activity (Morales-Esteban *et al.*, 2014). However, most activity is concentrated in the south, which is characterised by large earthquakes ($Mw \ge 6$), with long return periods (Morales-Esteban *et al.*, 2014), making the population unaware of the danger. This activity is due to the convergence between the Eurasian and African tectonic plates and the proximity of the Azores-Gibraltar fault (Morales-Esteban *et al.*, 2014). The Algarve-Huelva region is located in the south-west of the Iberian Peninsula. This area is close to the Marques de Pombal, Saint Vicente and Horseshoe faults, which have caused some of the most significant earthquakes that have affected the Iberian Peninsula, such as the 1755 Lisbon earthquake-tsunami

(Mw = 8.7-9.0) and the 1969 earthquake (Mw = 8). The first is also the largest documented seismic event to have affected Europe, killing 100 000 people. The maximum seismic intensity of this region, based on past earthquakes, is high in the Algarve (IX-X) and Huelva (VII-VIII) (Teves-Costa *et al.*, 2019). Although there is significant seismic risk, few seismic studies of the area have been carried out, as most seismic studies of the Iberian Peninsula focus on the east and south-east.

The seismic vulnerability of the region's buildings was evaluated using estimation methods such as SIRCO (Seismic Risk Simulator) (Fazendeiro Sá *et al.*, 2016) or ERSTA (Algarve Seismic Risk and Tsunami Study) (Autoridade Nacional de Protecção Civi [ANPC], 2010). They conclude that it is possible to reduce seismic risk by improving prevention and emergency plans. In this sense, rigorous vulnerability analyses of existing buildings and the implementation of appropriate retrofitting solutions can contribute to the reduction of the levels of physical damage, human losses and the economic impact of future seismic events.

The seismic behaviour of buildings plays a key role in the destructive potential of an earthquake. The vulnerability of existing buildings has been the focus of European interest in recent years. This is due to the damage caused by recent earthquakes, such as the L'Aquila earthquake in 2019 (Italy), the Lorca earthquake in 2011 (Spain) and the Amatrice earthquake in 2016 (Italy) (Ruiz-Pinilla *et al.*, 2016; Del Gaudio *et al.*, 2017; Fiorentino *et al.*, 2018). A large part of the buildings of these cities were severely damaged during these earthquakes. Therefore, enhancing the seismic performance of buildings has become a major concern (Mazzoni *et al.*, 2018) , which can be achieved through the implementation of seismic retrofitting techniques.

The school buildings in the PERSISTAH project have been chosen as the object of study because of their relevance in case of an earthquake. On the one hand, their community present a high vulnerability, due to their low adult/child ratio and high occupation, making the evacuation of the building during an emergency complicated. Moreover, in the event of an earthquake, not only physical damage and injuries are expected: children would also be emotionally affected in a significant way. In this regard, several studies have shown that serious psychological problems can arise on children who have suffered the effects of an earthquake and the benefits of preparedness (UNICEF, 2011). On the other hand, school building structures also present high seismic vulnerability. Their typically simple and repetitive layouts were designed and calculated based on old regulations that did not take into account the seismic action. Approximately 50% of the buildings were designed with reinforced concrete and have two or three floors, and they have seismically weak elements such as short columns. This type of buildings were significantly damaged during the 2011 Lorca

earthquake (Ruiz-Pinilla *et al.*, 2016). Furthermore, the area is characterised by the presence of superficail soft soil layers, which can amplify the effects of earthquakes.

In addition to this, due to their public nature, schools can also be used as shelters after a disaster. All this makes it essential to assess and guarantee their structural stability in the event of an earthquake.

It is important to note that in the event of an earthquake, both regions (Algarve and Huelva) would be equally affected. One of the objectives of the project is to improve the knowledge related to the current situation of each country, particularly on seismic standards and construction practices. In this sense, the seismic regulations, construction techniques, civil protection policies and seismic risk reduction strategies of both countries have been compared. In addition, a database has been developed with information sheets from each primary school (142 in Algarve and 138 in Huelva), taking into account the specifications of each region.

The main types of primary schools have been identified in this project. Subsequently, an inventory of the constructive and structural characteristics of each building has been created. With this information, the vulnerability of each school has been analysed through a non-linear static (pushover) analysis for obtaining the capacity curve. Finally, the ranking of the seismic behaviour of each school has been made through the *School-Score* system (a system of prioritisation of the seismic risk of school buildings). Seismic behaviour has been evaluated according to the hazard, vulnerability and exposure of each building.

1.1. PROJECT OBJECTIVE AND JUSTIFICATION

The PERSISTAH project was conceived based on a number of key points regarding the seismic resilience of the Algarve and Huelva regions:

- A significant part of the known seismic sources around the Algarve and Huelva areas would have a transboundary impact.
- Knowledge of existing hazards and the seismic vulnerability of buildings is essential for effective emergency response.
- It is important to study the application of mitigation measures in schools in the face of a possible seismic event.
- The development of educational material and the communication of seismic risk to students and teachers would reduce the vulnerability of the community.
- Making recommendations for rehabilitation aimed at technicians involved in construction will have a positive effect on the risk reduction.

 The creation of cooperative links in risk mitigation efforts between these two neighbouring regions will enhance the regions seismic resilience.

Based on these points, the main objective of the European project PER-SISTAH is the assessment of the seismic vulnerability of primary schools in the Algarve (Portugal) and Huelva (Spain) regions cooperatively. To this end, the objectives established by the National Platforms for Disaster Risk Reduction (PNRRC) of the National Civil Protection Commissions of Portugal and Spain have been considered.

This objective can be subdivided into the following goals:

- the classification of the school buildings of the area,
- the assessment of their vulnerability,
- the definition of a vulnerability index that allows to compare them,
- the definition of rehabilitation measures for those buildings which may need them,
- the application of those measures to one Portuguese and one Spanish school pilot building,
- the creation of educational guides to create awareness of the seismic risks in the school community, and
- the dissemination of the project results, where the present document is to be found.

1.2. MAIN OUTCOMES OF THE PROJECT

The PERSISTAH research project was conceived for having an impact on the Portuguese and Spanish society. This impact is maximised by the singularities of the seismicity of this geographical area, the international cooperation for risk reduction, and the relevance of the buildings under study.

Accordingly, the PERSISTAH research project has contributed to shaping a society that is more resilient to earthquakes.

The first contribution is the analysis of the seismic vulnerability of school buildings, which are very vulnerable to earthquakes. They play a fundamental role in the lives of children, who are the most vulnerable people in this type of event. After a disaster, the children should feel safe when returning to school, which means a return to normality. Moreover, because of their design and their public nature, they can be adapted as shelters after a disaster.

The analysis of the schools seismic vulnerability has been carried out through an integrated assessment methodology. This methodology is based on

a vulnerability analysis through the building capacity curve, used to obtain the structural performance point of the building. With this information, the damage probability of the school building is calculated.

This methodology has been implemented in a new software (Estêvão, 2019; Estêvão, 2020), where was implemented the adaptation of a set of computer programming routines previously developed in the applications EC8spec (Estêvão, 2016) and SIMULSIS (Estêvão and Oliveira, 2012). The purpose of this software is to obtain the School-score, which is based on the damage probability and other parameters, such as the vulnerability of non-structural elements, number of students, aspects affecting evacuation, etc. These are essential elements to take into account when studying the seismic vulnerability of a school building. Obtaining a high value for this parameter indicates that the school is more vulnerable to earthquakes. In this context, a new school database was created with the collaboration of all team members. A list with the classification of the schools has been drawn up based on their School-score, and it will be taken into consideration for future seismic retrofitting interventions in the buildings. Furthermore, a series of training activities for technicians on the aspects of the methodology applied and the particularities of the seismic retrofitting design have been carried out, in order to reduce the structural and non-structural risk of the buildings.

Another fundamental factor in this project is the significance of and need for **international cooperation** between countries when it comes to the reduction of seismic risk, since both regions, which present very similar geographical conditions, would be affected equally in the event of an earthquake.

Finally, another key point of the project is **the creation of seismic risk awareness among the educational community** and their training in this subject. Children are the future of our society and play a vital role in it. They learn at school, and bring their knowledge home to their families, which makes of the schools a powerful motor for change. A seismic event causes a great psychological impact on them, and therefore, education and communication of existing risks is essential. A series of trainings have been carried out through a number of activities and seminars in schools for both teachers and students. These dealt with issues related to identifying risks both inside and outside the school building. In addition, earthquake drills were carried out. This action is key to increasing awareness of seismic risk and learning how to act in the event of an earthquake. A number of pedagogical resources for teachers have also been developed. These materials include practical activities for children to learn about these subjects in a fun way, together with easy self-protection actions to be carried out before and after a seismic event¹.

Why does the ground shake? (https://dx.doi.org/10.12795/9788447230471). Practical guide for Earthquake resilient schools (https://dx.doi.org/10.12795/9788447230532).

1.3. DOCUMENT STRUCTURE

In the present document, the methodology and seismic regulations applied in the vulnerability analysis and subsequent seismic retrofitting of school buildings will be presented. This methodology responds to the objectives and main ideas of the project. Later on, the seismic hazard of the Algarve and Huelva area is discussed, as well as the seismic action used in each region for seismic analysis. In addition, the characterisation and typological classification of school buildings carried out for their subsequent seismic analysis is shown. Finally, several seismic retrofitting techniques proposed by the different regulations are outlined, as well as the different techniques studied in the project.

List of tables

Table 1.	Historical earthquakes felt in the Iberian Peninsula	
	(Silva and Rodriguez Pascua, 2014)	22
Table 2.	Soil classification and factor	27
Table 3.	Soil types. Geotechnical characteristic values	27
Table 4.	Base ground acceleration values (a_b) of the municipalities	
	of the province of Huelva	30
Table 5.	PGA Values ($T_R = 475$) of the municipalities of the province	
	of Huelva	33
Table 6.	Classification of soil types	36
Table 7.	Values of parameters $T_{\rm B}, T_{\rm C}$ and $T_{\rm D}$ and soil factor S	
	according to the type of spectrum	37
Table 8.	Importance factors (γ_I)	40
Table 9.	Values of $T_{\rm B}, T_{\rm C}$ and $T_{\rm D}$ and S for each type of response	
	spectrum	41
Table 10.	Reference peak ground acceleration a_{gR} (m/s ²)	
	in various seismic zones	42
Table 11.	List of basic parameters for determining the ground	
	acceleration according to each code	43
Table 12.	Sections included in the database	49
Table 13.	Building specification sheet for the calculation	
	of the structural model	51
Table 14.	Questionnaire sent to school management	52
Table 15.	Common characteristics of brickwork load-bearing	
	wall buildings	66
Table 16.	Mechanical parameters of the brick masonry	69
Table 17.	Classification of the types of vulnerability for buildings	
	with load-bearing walls	70
Table 18.	Evolution of mechanical properties and construction criteria	
	for reinforced concrete buildings according to regulations	72

SUMARY

d	
eatriz Z	Т
8	Т
	Г
	Т
	Т
	T T T T
	Т
	Т
	Т
	Т
	Т
NIE:	Т
SCHOOLS, SEISMICITY AND RETROI	

Table 19.	Mechanical properties of reinforced concrete frame buildings	70
	according to available design documentation	12
Table 20.	Characteristics of the columns and beams of reinforced concrete frame buildings	74
Table 21	Droparties of the reinforced concrete frame buildings	/ 1
1dDIC 21.	and square floor plan	77
T 11 00		//
Table 22.	Properties of the reinforced concrete frame buildings	70
	and rectangular floor plan	/8
Table 23.	Properties of reinforced concrete frame buildings	
	with intersections	79
Table 24.	Properties of reinforced concrete frame buildings	
	with intersections	80
Table 25.	Equations for determining the target displacement.	
	Annex B: EC8, part 1	88
Table 26.	Seismic adaptation strategies of the ATC-40 standard1	111
Table 27.	Rehabilitation Strategies in FEMA 3561	114
Table 28.	Types of intervention. Eurocode 08 part 3	116
Table 29.	Retrofitting strategies, Eurocode 08 part 3 Annex C	
	Masonry buildings 1	117
Table 29.	Retrofitting strategies, Eurocode 08 part 3 Annex C	
	Masonry buildings <i>(cont.)</i>	118
Table 30.	Retrofitting strategies, Eurocode-08 part 3 Annex A	
	Reinforced concrete buildings	119
Table 31	Global Retrofitting Strategies Eurocode-08 Part 3	
10010 011	Annex B Steel and composite structures	121
Table 32	Local retrofitting strategies Eurocode 08 part 3 Annex B:	
10010 02.	Steel and composite structures	122
Table 33	Local seismic retrofitting strategies in load bearing wall	
Table 55.	buildings	126
Table 34	General seismic retrofitting strategies in load-bearing wall	0
14010 04.	buildings	127
	bununigs	L 🚄 /

SUMARY

List of figures

Figure 1.	Convergence of the Eurasian and African tectonic plates	21
Figure 2.	Map of active quaternary faults in the Iberian Peninsula	
	with the magnitude of the earthquakes	
	(created by the author)	23
Figure 3.	Elastic response spectrum for different values of C and K	
	(NCSE-02)	29
Figure 4.	Elastic response spectrum of type 1 (a) and 2 (b)	
	for each type of soil	37
Figure 5.	Seismic zonation of Portugal (Decree law no. 235/83)	39
Figure 6.	Seismic zonation annex type 1 (a) and type 2 (b)	41
Figure 7.	Municipalities considered in the study	44
Figure 8.	Comparison of the response spectra for each seismic code	
c.	for a distant earthquake scenario (type 1) (a) and a nearby	
	earthquake scenario (type 2) (b)	45
Figure 9.	Schools according to the number of buildings into	
	which they are divided	47
Figure 10.	Classification of schools according to their structural	
	system	53
Figure 11.	Classification of buildings according to date of construction	
	and structural system (not considering buildings	
	for which the structural system is unknown)	54
Figure 12.	Classification of buildings according to their geometric	
	and volumetric characteristics	55
Figure 13.	Volumetric classification. School S084. Building: 2.	
	Type: Compact. Sub-type: no courtyards	55
Figure 14.	Volumetric classification. School S006. Building: 1.	
	Type: compact. Subtype: H-shape	56
Figure 15.	Volumetric classification. School S050. Building: 1.	
	Type: compact. Sub-type: compact	56

SUMARY

Figure 16.	Volumetric classification. School S026. Building: 1. Type: compact_Sub-type: with courtyards	57
Eigure 17	Volumetric classification School S076 Building: 1	57
rigule 17.	Type: compact. Subtype: symmetrical	57
Figure 18.	Volumetric classification. School S109. Building: 2.	
	Type: linear. Sub-type: small	58
Figure 19.	Volumetric classification. School S096. Building: 2.	
	Type: linear. Sub-type: medium	58
Figure 20.	Volumetric classification. School S039. Building: 1.	
	Type: linear. Sub-type: large	59
Figure 21.	Volumetric classification. School S057. Building: 1.	
	Type: linear. Subtype: L-shape	59
Figure 22.	Volumetric classification. School S067. Building: 1.	
	Type: linear. Subtype: various	60
Figure 23.	Volumetric classification. School S112. Building: 1.	
	Type: intersection. Subtype: volumes	60
Figure 24.	Volumetric classification. School S071. Building: 1.	
	Type: intersection. Subtype: irregular	61
Figure 25.	Volumetric classification. School S109. Building: 1.	
	Type: intersection. Sub-type: merged	61
Figure 26.	Volumetric classification. School S058. Building: 1.	
	Type: intersection. Subtype: E-shape	62
Figure 27.	Volumetric classification. School S117. Building: 1.	
	Type: intersection. Subtype: nexus	62
Figure 28.	Volumetric classification. School S108. Building: 1.	
	Type: intersection. Subtype: multiple	63
Figure 29.	Volumetric classification. School S077. Building: 1.	
	Type: intersection. Subtype: blade-shape	63
Figure 30.	Volumetric classification. School S013. Building: 1.	
	Type: prism	64
Figure 31.	Volumetric classification. School S020. Type: juxtaposed	64
Figure 32.	Volumetric classification. School S025. Type: sports facility	65
Figure 33.	One-foot (a) and one-and-a-half foot (b) brick type	
0	masonry section	66
Figure 34.	Sanitary one-way slab type section (a) and floor type (b)	67
Figure 35.	Sanitary slab type section (a), one-way (b)	
U	and two-way (c)	73
Figure 36.	Section type (a) enclosures and interior division (b)	75
Figure 37.	Capacity curve of a system equivalent to a system	
	with multiple degrees of freedom. PERSISTAH Software	82

SUMARY

Figure 38.	Bilinear capacity curve. SDOF equivalent system. Annex B: EC8, part 1	85
Figure 39.	Diagram of the algorithm developed for the N2 iterative	
	method (Estêvão, 2019)	86
Figure 40.	Capacity curve of the elastic-perfectly plastic structural	07
	system where $dt_1^* = dm$	87
Figure 41.	Determination of the target displacement for an equivalent	
	SDOF system for short periods (a) and long periods (b). A may $B_1 E C_2^{(2)}$ part 1	00
Eiguno 12	Consistive guerra of the electic perfectly plastic structurel	00
Figure 42.	system where $d^* \leq dm$	89
Figure 43	Canacity curve of the elastic-perfectly plastic structural	07
I iguite +5.	system with d.*>dm	90
Figure 44.	N2 method interface in the PERSISTAH software	91
Figure 45.	Diagrams of the capacity-demand spectrum method	
0	(Estêvão, 2019)	92
Figure 46.	Iterative process of the capacity-demand spectrum	
U	(Estêvão, 2019)	93
Figure 47.	Capacity curve and damage limit states. PERSISTAH	
	program	95
Figure 48.	Efficiency curve. PERSISTAH software	96
Figure 49.	Fragility curves. PERSISTAH software	98
Figure 50.	Diagram of the operation of the PERSISTAH software.	
	Obtaining the School-Score	100
Figure 51.	Schools database. PERSISTAH software	101
Figure 52.	Menu for georeferencing schools. Aerial image	101
Figure 53.	General characterisation of the school	102
Figure 54.	Exporting the location of schools in Google Earth.	
	PERSISTAH software	102
Figure 55.	School database. PERSISTAH software	103
Figure 56.	Capacity curve input module	103
Figure 57.	Schools database. PERSISTAH software	104
Figure 58.	Seismic action module. Response spectrum	105
Figure 59.	Seismic action corresponding to a seismic scenario	105
Figure 60.	Classification of schools according to School-Score.	
	PERSISTAH Software	106
Figure 61.	Performance point. N2 Method	107
Figure 62.	Fragility curves	107
Figure 63.	Example of export of filtered results to Google Earth	108

Figure 64.	Diagrams of horizontal diaphragm stiffening systems:	
	a) Reinforced concrete slab on existing slab;	
	b) Metal plate on existing slab; c) Edge increase	
	by means of plywood layer (Wooden slab); d) Bracing	
	under existing slab	112
Figure 65.	Diagrams of stiffening systems using buttresses:	
	a) Reinforced concrete; b) Steel profiles	113
Figure 66.	Stiffening systems diagrams: (a) Triangular frames;	
	(b) Diaphragm walls	115
Figure 67.	Ferro-cement. Diagram and construction detail	128
Figure 68.	Steel rod mesh covered by shotcrete.	
	Diagram and construction detail	129
Figure 69.	External steel bands. Diagram and construction detail	130
Figure 70.	Rectangular steel band mesh. Diagram and construction	
	detail	130
Figure 71.	Three-dimensional tying system. Diagram and	
	construction detail	130
Figure 72.	Injection of grout or epoxy resin. Diagram and	
	construction detail	131
Figure 73.	Injection of grout or epoxy resin in cracks. Diagram	
	and construction detail	131
Figure 74.	General action with reinforced concrete elements.	
	(a) rigid core and (b)confinement with RC columns	
	and beams. Diagrams and construction details	132
Figure 75.	Diagrams of reinforcement configurations using CFRP	
	bands	134
Figure 76.	Metal rebar in gap. Elevation and cross-section diagram	135
Figure 77.	Retrofitting systems analysed: steel mesh (a),	
	CFRP mesh (b), and steel rebar (c)	136
Figure 78.	Typical diagrams of stiffening systems using braced frames	139
Figure 79.	Stiffening system. Reinforced concrete diaphragm	141
Figure 80.	Stiffening system. Metal diaphragm	141
Figure 81.	Diagrams of systems for improving the deformation	
	capacity by additional confinement: a) Reinforced	
	concrete jacket; b) Steel jacket; c) Continuous steel jacket;	
	d) FRP jacket	143
Figure 82.	Ground floor. C.E.I.P. Los Llanos, Almonte (Huelva)	147
Figure 83.	First floor. C.E.I.P. Los Llanos, Almonte (Huelva)	148
Figure 84.	North elevation. C.E.I.P. Los Llanos, Almonte (Huelva)	149
Figure 85.	South elevation. C.E.I.P. Los Llanos, Almonte (Huelva)	149

Figure	86.	East elevation. C.E.I.P. Los Llanos, Almonte (Huelva)	150
Figure	87.	West elevation. C.E.I.P. Los Llanos, Almonte (Huelva)	150
Figure	88.	Construction details. Seismic retrofitting project	
		by the C.E.I.P. School Los Llanos, Almonte (Huelva)	152

This book presents the work carried out within the European research project PERSISTAH (Projetos de Escolas Resilientes aos SISmos no Território do Algarve e de Huelva, in Portuguese), which has been developed jointly by the University of Seville (Spain) and the University of Algarve (Portugal). This research project focuses on the study and assessment of the seismic vulnerability of primary education buildings in the Algarve (Portugal) and Huelva (Spain) territories.

The PERSISTAH project presents a series of essential aspects, which have supported its contribution in the formation of a more seismically resilient society. These aspects are: the singularities of the seismicity of this geographical area, the interest in the typology of school buildings and the analysis of their seismic vulnerability, the development of a seismic retrofitting methodology, which has been applied in two pilot schools of Huelva and the Algarve, the communication of seismic risk to the school community, and finally, the international cooperation for risk reduction.

In the present book, the methodology and seismic regulations applied in the vulnerability analysis and subsequent retrofitting of school buildings is presented. Then, the seismic hazard of the Algarve and Huelva area is explained, as well as the seismic action used in each region for seismic analysis based on the different seismic regulations. Later, the characterization and typological classification of school buildings carried out for subsequent seismic analysis are shown. Finally, several seismic reinforcement techniques proposed by the different regulations are outlined, in greater depth in the case of the solutions studied in the project.

